An expansion of the Jones representation of genus 2 and the Torelli group.
Let R be a ring with identity such that R⁺, the additive group of R, is torsion-free. If there is some R-module M such that and , we call R a Zassenhaus ring. Hans Zassenhaus showed in 1967 that whenever R⁺ is free of finite rank, then R is a Zassenhaus ring. We will show that if R⁺ is free of countable rank and each element of R is algebraic over ℚ, then R is a Zassenhaus ring. We will give an example showing that this restriction on R is needed. Moreover, we will show that a ring due to A....
We discuss a concept of loopoid as a non-associative generalization of Brandt groupoid. We introduce and study also an interesting class of more general objects which we call semiloopoids. A differential version of loopoids is intended as a framework for Lagrangian discrete mechanics.
In this note we explain why the group of n×n upper triangular matrices is defined usually over commutative ring while the full general linear group is defined over any associative ring.
In this paper, we define and study the hyper S-posets over an ordered semihypergroup in detail. We introduce the hyper version of a pseudoorder in a hyper S-poset, and give some related properties. In particular, we characterize the structure of factor hyper S-posets by pseudoorders. Furthermore, we introduce the concepts of order-congruences and strong order-congruences on a hyper S-poset A, and obtain the relationship between strong order-congruences and pseudoorders on A. We also characterize...