Automorphism invariants for semigroups.
A completely primary ring is a ring R with identity 1 ≠ 0 whose subset of zero-divisors forms the unique maximal ideal . We determine the structure of the group of automorphisms Aut(R) of a completely primary finite ring R of characteristic p, such that if is the Jacobson radical of R, then ³ = (0), ² ≠ (0), the annihilator of coincides with ² and , the finite field of elements, for any prime p and any positive integer r.