Automorphism groups of orientable elliptic-hyperelliptic Klein surfaces.
We show that the outer automorphism group of a polycyclic-by-finite group is an arithmetic group. This result follows from a detailed structural analysis of the automorphism groups of such groups. We use an extended version of the theory of the algebraic hull functor initiated by Mostow. We thus make applicable refined methods from the theory of algebraic and arithmetic groups. We also construct examples of polycyclic-by-finite groups which have an automorphism group which does not contain an arithmetic...
We show that the group of type-preserving automorphisms of any irreducible semiregular thick right-angled building is abstractly simple. When the building is locally finite, this gives a large family of compactly generated abstractly simple locally compact groups. Specialising to appropriate cases, we obtain examples of such simple groups that are locally indecomposable, but have locally normal subgroups decomposing non-trivially as direct products, all of whose factors are locally normal.
A completely primary ring is a ring R with identity 1 ≠ 0 whose subset of zero-divisors forms the unique maximal ideal . We determine the structure of the group of automorphisms Aut(R) of a completely primary finite ring R of characteristic p, such that if is the Jacobson radical of R, then ³ = (0), ² ≠ (0), the annihilator of coincides with ² and , the finite field of elements, for any prime p and any positive integer r.