Lifting Möbius groups: Addendum.
We consider a simple, possibly disconnected, d-sheeted branched covering π of a closed 2-dimensional disk D by a surface X. The isotopy classes of homeomorphisms of D which are pointwise fixed on the boundary of D and permute the branch values, form the braid group Bₙ, where n is the number of branch values. Some of these homeomorphisms can be lifted to homeomorphisms of X which fix pointwise the fiber over the base point. They form a subgroup of finite index in Bₙ. For each equivalence class...
For a universal algebra , let End() and Aut() denote, respectively, the endomorphism monoid and the automorphism group of . Let S be a semigroup and let T be a characteristic subsemigroup of S. We say that ϕ ∈ Aut(S) is a lift for ψ ∈ Aut(T) if ϕ|T = ψ. For ψ ∈ Aut(T) we denote by L(ψ) the set of lifts of ψ, that is, Let be an independence algebra of infinite rank and...
For a universal algebra 𝓐, let End(𝓐) and Aut(𝓐) denote, respectively, the endomorphism monoid and the automorphism group of 𝓐. Let S be a semigroup and let T be a characteristic subsemigroup of S. We say that ϕ ∈ Aut(S) is a lift for ψ ∈ Aut(T) if ϕ|T = ψ. For ψ ∈ Aut(T) we denote by L(ψ) the set of lifts of ψ, that is, L(ψ) = {ϕ ∈ Aut(S) | ϕ|T = ψ}. Let 𝓐 be an independence algebra of infinite rank and let S be a monoid of monomorphisms such that G = Aut(𝓐) ≤ S ≤ End(𝓐). In [2] it is proved...
We describe finitely generated groups universally equivalent (with constants from in the language) to a given torsion-free relatively hyperbolic group with free abelian parabolics. It turns out that, as in the free group case, the group embeds into the Lyndon’s completion of the group , or, equivalently, embeds into a group obtained from by finitely many extensions of centralizers. Conversely, every subgroup of containing is universally equivalent to . Since finitely generated...
In this paper we study dynamical properties of linear actions by free groups via the induced action on projective space. This point of view allows us to introduce techniques from Thermodynamic Formalism. In particular, we obtain estimates on the growth of orbits and their limiting distribution on projective space.
A complex hypersurface in is a linear free divisor (LFD) if its module of logarithmic vector fields has a global basis of linear vector fields. We classify all LFDs for at most .By analogy with Grothendieck’s comparison theorem, we say that the global logarithmic comparison theorem (GLCT) holds for if the complex of global logarithmic differential forms computes the complex cohomology of . We develop a general criterion for the GLCT for LFDs and prove that it is fulfilled whenever the...
We find the basis of all linear identities which are true in the variety of entropic graph algebras. We apply it to describe the lattice of all subvarieties of power entropic graph algebras.