Reduction theory using semistability, II.
We study a certain type of action of categories on categories and on operads. Using the structure of the categories Δ and Ω governing category and operad structures, respectively, we define categories which instead encode the structure of a category acting on a category, or a category acting on an operad. We prove that the former has the structure of an elegant Reedy category, whereas the latter has the structure of a generalized Reedy category. In particular, this approach gives a new way to regard...
In an absolute space with congruence there are line reflections and point reflections. With the help of point reflections one can define in a natural way an addition + of points which is only associative if the product of three point reflection is a point reflection again. In general, for example for the case that is a linear space with hyperbolic incidence structure, the addition is not associative. is a K-loop or a Bruck loop.
For an arbitrary permutation in the semigroup of full transformations on a set with elements, the regular elements of the centralizer of in are characterized and criteria are given for to be a regular semigroup, an inverse semigroup, and a completely regular semigroup.