Displaying 161 – 180 of 10155

Showing per page

A direct factor theorem for commutative group algebras

William Ullery (1992)

Commentationes Mathematicae Universitatis Carolinae

Suppose F is a field of characteristic p 0 and H is a p -primary abelian A -group. It is shown that H is a direct factor of the group of units of the group algebra F H .

A dyadic view of rational convex sets

Gábor Czédli, Miklós Maróti, Anna B. Romanowska (2014)

Commentationes Mathematicae Universitatis Carolinae

Let F be a subfield of the field of real numbers. Equipped with the binary arithmetic mean operation, each convex subset C of F n becomes a commutative binary mode, also called idempotent commutative medial (or entropic) groupoid. Let C and C ' be convex subsets of F n . Assume that they are of the same dimension and at least one of them is bounded, or F is the field of all rational numbers. We prove that the corresponding idempotent commutative medial groupoids are isomorphic iff the affine space F n ...

A factorization of quasiorder hypergroups

Ivan Chajda, Šárka Hošková (2004)

Commentationes Mathematicae Universitatis Carolinae

The contribution is devoted to the question of the interchange of the construction of a quasiorder hypergroup from a quasiordered set and the factorization.

A family of critically finite maps with symmetry.

Scott Crass (2005)

Publicacions Matemàtiques

The symmetric group Sn acts as a reflection group on CPn-2 (for n>=3).Associated with each of the (n2) transpositions in Sn is an involution on CPn-2 that pointwise fixes a hyperplane -the mirrors of the action. For each such action, there is a unique Sn-symmetric holomorphic map of degree n+1 whose critical set is precisely the collection of hyperplanes. Since the map preserves each reflecting hyperplane, the members of this family are critically-finite in a very strong sense. Considerations...

A family of totally ordered groups with some special properties

Elena Olivos (2005)

Annales mathématiques Blaise Pascal

Let K be a field with a Krull valuation | | and value group G { 1 } , and let B K be the valuation ring. Theories about spaces of countable type and Hilbert-like spaces in [1] and spaces of continuous linear operators in [2] require that all absolutely convex subsets of the base field K should be countably generated as B K -modules.By [1] Prop. 1.4.1, the field K is metrizable if and only if the value group G has a cofinal sequence. We prove that for any fixed cardinality κ , there exists a metrizable field K ...

Currently displaying 161 – 180 of 10155