Displaying 21 – 40 of 126

Showing per page

Commutative modular group algebras of p -mixed and p -splitting abelian Σ -groups

Peter Vassilev Danchev (2002)

Commentationes Mathematicae Universitatis Carolinae

Let G be a p -mixed abelian group and R is a commutative perfect integral domain of char R = p > 0 . Then, the first main result is that the group of all normalized invertible elements V ( R G ) is a Σ -group if and only if G is a Σ -group. In particular, the second central result is that if G is a Σ -group, the R -algebras isomorphism R A R G between the group algebras R A and R G for an arbitrary but fixed group A implies A is a p -mixed abelian Σ -group and even more that the high subgroups of A and G are isomorphic, namely, A G . Besides,...

Direct decompositions and basic subgroups in commutative group rings

Peter Vassilev Danchev (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

An attractive interplay between the direct decompositions and the explicit form of basic subgroups in group rings of abelian groups over a commutative unitary ring are established. In particular, as a consequence, we give a simpler confirmation of a more general version of our recent result in this aspect published in Czechoslovak Math. J. (2006).

G -nilpotent units of commutative group rings

Peter Vassilev Danchev (2012)

Commentationes Mathematicae Universitatis Carolinae

Suppose R is a commutative unital ring and G is an abelian group. We give a general criterion only in terms of R and G when all normalized units in the commutative group ring R G are G -nilpotent. This extends recent results published in [Extracta Math., 2008–2009] and [Ann. Sci. Math. Québec, 2009].

Group rings with FC-nilpotent unit groups.

Vikas Bist (1991)

Publicacions Matemàtiques

Let U(RG) be the unit group of the group ring RG. Groups G such that U(RG) is FC-nilpotent are determined, where R is the ring of integers Z or a field K of characteristic zero.

Homology of gaussian groups

Patrick Dehornoy, Yves Lafont (2003)

Annales de l’institut Fourier

We describe new combinatorial methods for constructing explicit free resolutions of by G -modules when G is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of G . Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.

Currently displaying 21 – 40 of 126