On multipliers of Heineken-Mohamed type groups
* The authors thank the “Swiss National Science Foundation” for its support.We study the subgroup structure, Hecke algebras, quasi-regular representations, and asymptotic properties of some fractal groups of branch type. We introduce parabolic subgroups, show that they are weakly maximal, and that the corresponding quasi-regular representations are irreducible. These (infinite-dimensional) representations are approximated by finite-dimensional quasi-regular representations. The Hecke algebras...
In this article, we study the elements with disconnected centralizer in the Brauer complex associated to a simple algebraic group defined over a finite field with corresponding Frobenius map and derive the number of -stable semisimple classes of with disconnected centralizer when the order of the fundamental group has prime order. We also discuss extendibility of semisimple characters of the fixed point subgroup to their inertia group in the full automorphism group. As a consequence, we...
For a complex character of a finite group , it is known that the product is a multiple of , where is the image of on . The character is said to be a sharp character of type if and . If the principal character of is not an irreducible constituent of , then the character is called normalized. It is proposed as a problem by P. J. Cameron and M. Kiyota, to find finite groups with normalized sharp characters of type . Here we prove that such a group with nontrivial center is...
Let be a commutative ring, an -module and a group of -automorphisms of , usually with some sort of rank restriction on . We study the transfer of hypotheses between and such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose is -Noetherian. If has finite rank, then also is -Noetherian. Further, if is -Noetherian and if only certain abelian sections...
We extend the notions of quasi-monomial groups and almost monomial groups in the framework of supercharacter theories, and we study their connection with Artin’s conjecture regarding the holomorphy of Artin -functions.