Displaying 41 – 60 of 83

Showing per page

Stacks of group representations

Paul Balmer (2015)

Journal of the European Mathematical Society

We start with a small paradigm shift about group representations, namely the observation that restriction to a subgroup can be understood as an extension-of-scalars. We deduce that, given a group G , the derived and the stable categories of representations of a subgroup H can be constructed out of the corresponding category for G by a purely triangulated-categorical construction, analogous to étale extension in algebraic geometry. In the case of finite groups, we then use descent methods to investigate...

Structure of the Unit Group of FD10

Khan, Manju (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 16U60, 20C05.The structure of the unit group of the group algebra FD10 of the dihedral group D10 of order 10 over a finite field F has been obtained.Supported by National Board of Higher Mathematics, DAE, India.

Structure of the unit group of the group algebras of non-metabelian groups of order 128

Navamanirajan Abhilash, Elumalai Nandakumar, Rajendra K. Sharma, Gaurav Mittal (2025)

Mathematica Bohemica

We characterize the unit group for the group algebras of non-metabelian groups of order 128 over the finite fields whose characteristic does not divide the order of the group. Up to isomorphism, there are 2328 groups of order 128 and only 14 of them are non-metabelian. We determine the Wedderburn decomposition of the group algebras of these non-metabelian groups and subsequently characterize their unit groups.

Structure of unitary groups over finite group rings and its application

Jizhu Nan, Yufang Qin (2010)

Czechoslovak Mathematical Journal

In this paper, we determine all the normal forms of Hermitian matrices over finite group rings R = F q 2 G , where q = p α , G is a commutative p -group with order p β . Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over R through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters.

Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions

Murray R. Bremner, Sara Madariaga, Luiz A. Peresi (2016)

Commentationes Mathematicae Universitatis Carolinae

This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra 𝔽 S n of the symmetric group S n over a field 𝔽 of characteristic 0 (or p > n ). The goal is to obtain a constructive version of the isomorphism ψ : λ M d λ ( 𝔽 ) 𝔽 S n where λ is a partition of n and d λ counts the standard tableaux of shape λ ....

Subgroups of odd depth—a necessary condition

Sebastian Burciu (2013)

Czechoslovak Mathematical Journal

This paper gives necessary and sufficient conditions for subgroups with trivial core to be of odd depth. We show that a subgroup with trivial core is an odd depth subgroup if and only if certain induced modules from it are faithful. Algebraically this gives a combinatorial condition that has to be satisfied by the subgroups with trivial core in order to be subgroups of a given odd depth. The condition can be expressed as a certain matrix with { 0 , 1 } -entries to have maximal rank. The entries of the matrix...

Currently displaying 41 – 60 of 83