Computing homomorphism spaces between modules over finite dimensional algebras.
The quotient singularities of dimensions two and three obtained from polyhedral groups and the corresponding binary polyhedral groups admit natural resolutions of singularities as Hilbert schemes of regular orbits whose exceptional fibres over the origin reveal similar properties. We construct a morphism between these two resolutions, contracting exactly the excess part of the exceptional fibre. This construction is motivated by the study of some pencils of K3 surfaces appearing as minimal resolutions...
We define the -restriction and -induction functors on the category of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.