A Finitely Presented Solvable Group that is not Residually Finite.
We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk {(x,y) ∈ ℝ²: 0 < x² + y² < 1} without fixed points.
We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product....
The purpose of this paper is to prove the existence of a free subgroup of the group of all affine transformations on the plane with determinant 1 such that the action of the subgroup is locally commutative.
We prove that if is an integer and is a finitely generated soluble group such that every infinite set of elements of contains a pair which generates a nilpotent subgroup of class at most , then is an extension of a finite group by a torsion-free -Engel group. As a corollary, there exists an integer , depending only on and the derived length of , such that is finite. For , such depends only on .
A characterization of central automorphisms of groups is given. As an application, we obtain a new proof of the centrality of power automorphisms.