On linearly ordered subgroups of a lattice ordered group
Sia un primo, e un gruppo abeliano elementare di ordine che agisce sul -gruppo localmente finito . Supponiamo che esista un intero positivo tale che per ogni . In questo articolo si dimostra che è nilpotente, con classe di nilpotenza limitata da una funzione che dipende solo da e .
In the present work we consider infinite locally finite minimal non-solvable groups, and give certain characterizations. We also define generalizations of the centralizer to establish a result relevant to infinite locally finite minimal non-solvable groups.
We show that a barely transitive group is totally imprimitive if and only if it is locally graded. Moreover, we obtain the description of a barely transitive group G for the case G has a cyclic subgroup 〈x〉 which intersects non-trivially with all subgroups and for the case a point stabilizer H of G has a subgroup H 1 of finite index in H satisfying the identity χ(H 1) = 1, where χ is a multi-linear commutator of weight w.
It is proved that a soluble residually finite minimax group is finite-by-nilpotent if and only if it has only finitely many maximal subgroups which are not normal.
A group is said to be a PC-group, if is a polycyclic-by-finite group for all . A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.
The current article considers some infinite groups whose finitely generated subgroups are either permutable or pronormal. A group is called a generalized radical, if has an ascending series whose factors are locally nilpotent or locally finite. The class of locally generalized radical groups is quite wide. For instance, it includes all locally finite, locally soluble, and almost locally soluble groups. The main result of this paper is the followingTheorem. Let be a locally generalized radical...
Among compact Hausdorff groups whose maximal profinite quotient is finitely generated, we characterize those that possess a proper dense normal subgroup. We also prove that the abstract commutator subgroup is closed for every closed normal subgroup of .