Injectors of Locally Soluble FC-Groups.
J.C. Beidleman, M.J. Karbe (1987)
Monatshefte für Mathematik
Karanikas, C. (1991)
International Journal of Mathematics and Mathematical Sciences
Erfanian, Ahmad, Russo, Francesco G. (2010)
Acta Universitatis Apulensis. Mathematics - Informatics
Carmela Musella (1999)
Bollettino dell'Unione Matematica Italiana
Un sottogruppo di un gruppo si dice «almost normal» se ha soltanto un numero finito di coniugati in , e ovviamente l'insieme costituito dai sottogruppi almost normal di è un sottoreticolo del reticolo di tutti i sottogruppi di . In questo articolo vengono studiati gli isomorfismi tra reticoli di sottogruppi almost normal, provando in particolare che se è un gruppo supersolubile e è un gruppo FC-risolubile tale che i reticoli e sono isomorfi, allora anche è supersolubile, e...
Ahmet Arikan, Nadir Trabelsi (2010)
Rendiconti del Seminario Matematico della Università di Padova
Marcel Herzog, Federico Menegazzo (1995)
Rendiconti del Seminario Matematico della Università di Padova
Kurdachenko, Leonid A., Subbotin, Igor Ya. (2001)
International Journal of Mathematics and Mathematical Sciences
A. Osman Asar, A. Arikan (1997)
Revista Matemática de la Universidad Complutense de Madrid
In this work it is shown that a locally graded minimal non CC-group G has an epimorphic image which is a minimal non FC-group and there is no element in G whose centralizer is nilpotent-by-Chernikov. Furthermore Theorem 3 shows that in a locally nilpotent p-group which is a minimal non FC-group, the hypercentral and hypocentral lengths of proper subgroups are bounded.
Francesco Russo, Nadir Trabelsi (2009)
Annales mathématiques Blaise Pascal
A group is said to be a PC-group, if is a polycyclic-by-finite group for all . A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.
Y. Zalcstein, M. Garzón (1986/1987)
Semigroup forum
Leyli Jafari Taghvasani, Soran Marzang, Mohammad Zarrin (2019)
Czechoslovak Mathematical Journal
We show that a finite nonabelian characteristically simple group satisfies if and only if , where is the number of isomorphism classes of derived subgroups of and is the set of prime divisors of the group . Also, we give a negative answer to a question raised in M. Zarrin (2014).
Martyn Dixon, Martin Evans, Antonio Tortora (2010)
Open Mathematics
A subgroup H of a group G is inert if |H: H ∩ H g| is finite for all g ∈ G and a group G is totally inert if every subgroup H of G is inert. We investigate the structure of minimal normal subgroups of totally inert groups and show that infinite locally graded simple groups cannot be totally inert.
Leonid A. Kurdachenko, Igor Ya. Subbotin (2003)
Publicacions Matemàtiques
This article is dedicated to some criteria of generalized nilpotency involving pronormality and abnormality. Also new results on groups, in which abnormality is a transitive relation, have been obtained.
Kenneth A. Brown (1978)
Compositio Mathematica
L. A. Kurdachenko, J. Otal (2001)
Bollettino dell'Unione Matematica Italiana
In questo lavoro studiamo i non CC-gruppi monolitici con tutti i quozienti propri CC-gruppi, che hanno sottogruppi abeliani normali non banali.
O. D. Artemovych (2000)
Publicacions Matemàtiques
We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Cernikov group or has an infinite properly descending chain of non-BFC subgroups.
Mario Curzio, Patrizia Longobardi, Mercede Maj (1983)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Let be a group and an integer . We say that has the -permutation property if, for any elements in , there exists some permutation of , such that . We prouve that every group is an FC-nilpotent group of class , and that a finitely generated group has the -permutation property (for some ) if, and only if, it is abelian by finite. We prouve also that a group if, and only if, its derived subgroup has order at most 2.
Carlo Casolo (1988)
Rendiconti del Seminario Matematico della Università di Padova
Javier Otal, Juan Manuel Peña (1991)
Rendiconti del Seminario Matematico della Università di Padova
Patrizia Longobardi, Mercede Maj, Stewart Stonehewer (1995)
Rendiconti del Seminario Matematico della Università di Padova