Displaying 161 – 180 of 241

Showing per page

R-trees and the Bieri-Neumann-Strebel invariant.

Gilbert Levitt (1994)

Publicacions Matemàtiques

Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.

Séries de croissance et polynômes d'Ehrhart associés aux réseaux de racines

Roland Bacher, Pierre de La Harpe, Boris Venkov (1999)

Annales de l'institut Fourier

Étant donnés un système de racines R d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à R . Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de R .

Some generalized Coxeter groups and their orbifolds.

Marcel Hagelberg, Rubén A. Hidalgo (1997)

Revista Matemática Iberoamericana

In this note we construct examples of geometric 3-orbifolds with (orbifold) fundamental group isomorphic to a (Z-extension of a) generalized Coxeter group. Some of these orbifolds have either euclidean, spherical or hyperbolic structure. As an application, we obtain an alternative proof of theorem 1 of Hagelberg, Maclaughlan and Rosenberg in [5]. We also obtain a similar result for generalized Coxeter groups.

Sphere equivalence, Property H, and Banach expanders

Qingjin Cheng (2016)

Studia Mathematica

We study the uniform classification of the unit spheres of general Banach sequence spaces. In particular, we obtain some interesting applications involving Property H introduced by Kasparov and Yu, and Banach expanders.

Strong boundedness and algebraically closed groups

Barbara Majcher-Iwanow (2007)

Commentationes Mathematicae Universitatis Carolinae

Let G be a non-trivial algebraically closed group and X be a subset of G generating G in infinitely many steps. We give a construction of a binary tree associated with ( G , X ) . Using this we show that if G is ω 1 -existentially closed then it is strongly bounded.

Currently displaying 161 – 180 of 241