On subgroups of GL (n, A) which are generated by commutators. II.
We consider the unitary group U of complex, separable, infinite-dimensional Hilbert space as a discrete group. It is proved that, whenever U acts by isometries on a metric space, every orbit is bounded. Equivalently, U is not the union of a countable chain of proper subgroups, and whenever E ⊆ U generates U, it does so by words of a fixed finite length.
Let G* denote a nonprincipal ultrapower of a group G. In 1986 M.~Boffa posed a question equivalent to the following one: if G does not satisfy a positive law, does G* contain a free nonabelian subsemigroup? We give the affirmative answer to this question in the large class of groups containing all residually finite and all soluble groups, in fact, all groups considered in traditional textbooks on group theory.
We study the Cantor-Bendixson rank of metabelian and virtually metabelian groups in the space of marked groups, and in particular, we exhibit a sequence of 2-generated, finitely presented, virtually metabelian groups of Cantor-Bendixson rank .