-adic completions and automorphisms of nilpotent groups
The aim is to investigate the behaviour of (homomorphic images of) periodic linear groups which are factorized by mutually permutable subgroups. Mutually permutable subgroups have been extensively investigated in the finite case by several authors, among which, for our purposes, we only cite J. C. Beidleman and H. Heineken (2005). In a previous paper of ours (see M. Ferrara, M. Trombetti (2022)) we have been able to generalize the first main result of J. C. Beidleman, H. Heineken (2005) to periodic...
Let be a group and be an integer greater than or equal to . is said to be -permutable if every product of elements can be reordered at least in one way. We prove that, if has a centre of finite index , then is -permutable. More bounds are given on the least such that is -permutable.
The aim for the present paper is to study the theory of P-localization of a group in a category C such that it contains the category of the nilpotent groups as a full sub-category. In the second section we present a number of results on P-localization of a group G, which is the semi-direct product of an abelian group A with a group X, in the category G of all groups. It turns out that the P-localized (GP) is completely described by the P-localized XP of X, A and the action w of X on A. In the third...
Bref survol du théorème de non-plongement de J. Cheeger et B. Kleiner pour le groupe d’Heisenberg dans .
Let P be an arbitrary set of primes. The P-nilpotent completion of a group G is defined by the group homomorphism η: G → GP' where GP' = inv lim(G/ΓiG)P. Here Γ2G is the commutator subgroup [G,G] and ΓiG the subgroup [G, Γi−1G] when i > 2. In this paper, we prove that P-nilpotent completion of an infinitely generated free group F does not induce an isomorphism on the first homology group with ZP coefficients. Hence, P-nilpotent completion is not idempotent. Another important consequence of...