Page 1 Next

Displaying 1 – 20 of 149

Showing per page

Salvetti complex, spectral sequences and cohomology of Artin groups

Filippo Callegaro (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.

Self-similar Lie algebras

Laurent Bartholdi (2015)

Journal of the European Mathematical Society

We give a general definition of branched, self-similar Lie algebras, and show that important examples of Lie algebras fall into that class. We give sufficient conditions for a self-similar Lie algebra to be nil, and prove in this manner that the self-similar algebras associated with Grigorchuk’s and Gupta–Sidki’s torsion groups are nil as well as self-similar.We derive the same results for a class of examples constructed by Petrogradsky, Shestakov and Zelmanov.

Séries de croissance et polynômes d'Ehrhart associés aux réseaux de racines

Roland Bacher, Pierre de La Harpe, Boris Venkov (1999)

Annales de l'institut Fourier

Étant donnés un système de racines R d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à R . Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de R .

Currently displaying 1 – 20 of 149

Page 1 Next