FC-gruppi e proiettività
Some lattice properties of FC-groups and generalized FC-groups are considered in this paper.
Some lattice properties of FC-groups and generalized FC-groups are considered in this paper.
In this paper, we consider finite groups with precisely one nonlinear nonfaithful irreducible character. We show that the groups of order 16 with nilpotency class 3 are the only -groups with this property. Moreover we completely characterize the nilpotent groups with this property. Also we show that if is a group with a nontrivial center which possesses precisely one nonlinear nonfaithful irreducible character then is solvable.
We prove that all finite simple groups of Lie type, with the exception of the Suzuki groups, can be made into a family of expanders in a uniform way. This confirms a conjecture of Babai, Kantor and Lubotzky from 1989, which has already been proved by Kassabov for sufficiently large rank. The bounded rank case is deduced here from a uniform result for which is obtained by combining results of Selberg and Drinfeld via an explicit construction of Ramanujan graphs by Lubotzky, Samuels and Vishne.
If X is a property or a class of groups, an automorphism ϕ of a group G is X-finitary if there is a normal subgroup N of G centralized by ϕ such that G/N is an X-group. Groups of such automorphisms for G a module over some ring have been very extensively studied over many years. However, for groups in general almost nothing seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general case for X the class of finite groups. Here we look further at the finite case but our main...
We study infinite finitely generated groups having a finite set of conjugacy classes meeting all cyclic subgroups. The results concern growth and the ascending chain condition for such groups.