Groups with boundedly finite automorphism classes
A subgroup H of a group G is said to be nearly normal in G if it has finite index in its normal closure in G. A well-known theorem of B.H. Neumann states that every subgroup of a group G is nearly normal if and only if the commutator subgroup G' is finite. In this article, groups in which the intersection and the join of each system of nearly normal subgroups are likewise nearly normal are considered, and some sufficient conditions for such groups to be finite-by-abelian are given.
A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.
It is proved that if a locally soluble group of infinite rank has only finitely many non-trivial conjugacy classes of subgroups of infinite rank, then all its subgroups are normal.
Un sottogruppo di un gruppo si dice nearly normal se ha indice finito nella sua chiusura normale . In questa nota si caratterizzano i gruppi in cui ogni sottogruppo che non sia nearly normal soddisfa una fissata condizione finitaria per diverse scelte naturali della proprietà .
A group G is called metamodular if for each subgroup H of G either the subgroup lattice 𝔏(H) is modular or H is a modular element of the lattice 𝔏(G). Metamodular groups appear as the natural lattice analogues of groups in which every non-abelian subgroup is normal; these latter groups have been studied by Romalis and Sesekin, and here their results are extended to metamodular groups.
A subgroup H of a group G is nearly normal if it has finite index in its normal closure . A relevant theorem of B. H. Neumann states that groups in which every subgroup is nearly normal are precisely those with finite commutator subgroup. We shall say that a subgroup H of a group G is nearly modular if H has finite index in a modular element of the lattice of subgroups of G. Thus nearly modular subgroups are the natural lattice-theoretic translation of nearly normal subgroups. In this article we...
Let F C 0 be the class of all finite groups, and for each nonnegative integer n define by induction the group class FC^(n+1) consisting of all groups G such that for every element x the factor group G/CG ( <x>^G ) has the property FC^n . Thus FC^1 -groups are precisely groups with finite conjugacy classes, and the class FC^n obviously contains all finite groups and all nilpotent groups with class at most n. In this paper the known theory of FC-groups is taken as a model, and it is shown that...
We introduce the notion of the non-subnormal deviation of a group G. If the deviation is 0 then G satisfies the minimal condition for nonsubnormal subgroups, while if the deviation is at most 1 then G satisfies the so-called weak minimal condition for such subgroups (though the converse does not hold). Here we present some results on groups G that are either soluble or locally nilpotent and that have deviation at most 1. For example, a torsion-free locally nilpotent with deviation at most 1 is nilpotent,...