Euklidischer Algorithmus und die Gruppe GL.
Every reasonably sized matrix group has an injective homomorphism into the group of all bijections of the natural numbers. However, not every reasonably sized simple group has an injective homomorphism into .
Research partially supported by INTAS grant 97-1644We consider the variety of (p + 1)-tuples of matrices Aj (resp. Mj ) from given conjugacy classes cj ⊂ gl(n, C) (resp. Cj ⊂ GL(n, C)) such that A1 + . . . + A[p+1] = 0 (resp. M1 . . . M[p+1] = I). This variety is connected with the weak Deligne-Simpson problem: give necessary and sufficient conditions on the choice of the conjugacy classes cj ⊂ gl(n, C) (resp. Cj ⊂ GL(n, C)) so that there exist (p + 1)-tuples with trivial centralizers of matrices...
Soit un groupe défini sur les rationnels, simplement connexe, -quasisimple et compact sur . On étudie des suites de sous-ensembles des points rationnels de définis par des conditions sur leur projection dans le groupe des adèles finies de . Nous montrons dans ce cadre un résultat d’équirépartition vers la probabilité de Haar sur le groupe des points réels. On utilise pour cela des propriétés de mélange de l’action du groupe des points adéliques sur l’espace . Pour illustrer ce résultat,...
We prove that the Cayley graphs of are expanders with respect to the projection of any fixed elements in generating a Zariski dense subgroup.
We show that random Cayley graphs of finite simple (or semisimple) groups of Lie type of fixed rank are expanders. The proofs are based on the Bourgain-Gamburd method and on the main result of our companion paper [BGGT].
Let be a fixed symmetric finite subset of that generates a Zariski dense subgroup of when we consider it as an algebraic group over by restriction of scalars. We prove that the Cayley graphs of with respect to the projections of is an expander family if ranges over square-free ideals of if and is an arbitrary numberfield, or if and .
We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra . We discuss two cases, according to whether the parameter is a root of unity. We show that the universal enveloping algebra of embeds in a non-principal ultraproduct of , where varies over the primitive roots of unity.