Solution of the congruence subgroup problem for and
*Research partially supported by INTAS grant 97-1644.Consider the Deligne-Simpson problem: give necessary and sufficient conditions for the choice of the conjugacy classes Cj ⊂ GL(n,C) (resp. cj ⊂ gl(n,C)) so that there exist irreducible (p+1)-tuples of matrices Mj ∈ Cj (resp. Aj ∈ cj) satisfying the equality M1 . . .Mp+1 = I (resp. A1+. . .+Ap+1 = 0). The matrices Mj and Aj are interpreted as monodromy operators and as matrices-residua of fuchsian systems on Riemann’s sphere. We give new examples...
On démontre qu’un homomorphisme d’un sous-groupe de dans ce dernier est déterminé à une conjugaison près par son caractère si satisfait à certaines conditions. C’est le cas par exemple d’un sous-groupe discret uniforme de .
On considère une extension finie de , avec un nombre premier, un sous-groupe d’indice fini de et le groupe . Nous montrons que admet un sous-groupe -Zariski-dense dont toutes les matrices ont leur spectre inclus dans si et seulement si soit est dans le sous-groupe , soit n’est pas congru à 2 modulo 4.
Let be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in as those intersecting only Bruhat cells in corresponding to involutions in the Weyl group of .
Let be a local non-archimedean field. The set of all equivalence classes of irreducible spherical representations of is described in the first part of the paper. In particular, it is shown that each irreducible spherical representation is parabolically induced by an unramified character. Bernstein’s result on the irreducibility of the parabolically induced representations of by irreducible unitary ones, and Ol’shanskij’s construction of complementary series give directly a description of all...