On purity and quasi-equality of Abelian groups.
We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups for which is regular is given.
It is proved that every uncountable -bounded group and every homogeneous space containing a convergent sequence are resolvable. We find some conditions for a topological group topology to be irresolvable and maximal.
We assign to each pair of positive integers and a digraph whose set of vertices is and for which there is a directed edge from to if . The digraph is semiregular if there exists a positive integer such that each vertex of the digraph has indegree or 0. Generalizing earlier results of the authors for the case in which , we characterize all semiregular digraphs when is arbitrary.
Let G be an additive finite abelian group. For every positive integer ℓ, let be the smallest positive integer t such that each sequence S over G of length |S| ≥ t has a nonempty zero-sum subsequence of length not equal to ℓ. In this paper, we determine for certain finite groups, including cyclic groups, the groups and elementary abelian 2-groups. Following Girard, we define disc(G) as the smallest positive integer t such that every sequence S over G with |S| ≥ t has nonempty zero-sum subsequences...
We show the inheritance of summable property for certain fully invariant subgroups by the whole group and vice versa. The results are somewhat parallel to these due to Linton (Mich. Math. J., 1975) and Linton-Megibben (Proc. Amer. Math. Soc., 1977). They also generalize recent assertions of ours in (Alg. Colloq., 2009) and (Bull. Allah. Math. Soc., 2008)
In his book on unsolved problems in number theory [1] R. K. Guy asks whether for every natural l there exists with the following property: for every and any n elements of a group such that the product of any two of them is different from the unit element of the group, there exist l of the such that for and . In this note we answer this question in the affirmative in the first non-trivial case when l=3 and the group is abelian, proving the following result.