Algebraic dimension of semigroups with application to invariant measures.
We study algebraic loop groups and affine Grassmannians in positive characteristic. The main results are normality of Schubert-varieties, the construction of line-bundles on the affine Grassmannian, and the proof that they induce line-bundles on the moduli-stack of torsors.
Let A be a locally convex, unital topological algebra whose group of units is open and such that inversion is continuous. Then inversion is analytic, and thus is an analytic Lie group. We show that if A is sequentially complete (or, more generally, Mackey complete), then has a locally diffeomorphic exponential function and multiplication is given locally by the Baker-Campbell-Hausdorff series. In contrast, for suitable non-Mackey complete A, the unit group is an analytic Lie group without...