Openly factorizable spaces and compact extensions of topological semigroups
We prove that the semigroup operation of a topological semigroup extends to a continuous semigroup operation on its Stone-Čech compactification provided is a pseudocompact openly factorizable space, which means that each map to a second countable space can be written as the composition of an open map onto a second countable space and a map . We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.