Remarks on compact semigroups
If N is a simply connected real nilpotent Lie group with a Γ-rational complex structure, where Γ is a lattice in N, then [...] for each s, t.We study relations between invariant complex structures and Hodge numbers of compact nilmanifolds from a viewpoint of Lie algberas.
Nous étudions les -extensions dans un groupe classique -adique et obtenons une relation entre certaines -extensions à l’aide d’une représentation de Weil. Nous en donnons une application à l’étude des points de réductibilité de certaines induites paraboliques.
Let be a group and the number of its -dimensional irreducible complex representations. We define and study the associated representation zeta function . When is an arithmetic group satisfying the congruence subgroup property then has an “Euler factorization”. The “factor at infinity” is sometimes called the “Witten zeta function” counting the rational representations of an algebraic group. For these we determine precisely the abscissa of convergence. The local factor at a finite place...