Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen.
Let G and H be locally compact, second countable groups. Assume that G acts in a measure class preserving way on a standard space (X,μ) such that has an invariant mean and that there is a Borel cocycle α: G × X → H which is proper in the sense of Jolissaint (2000) and Knudby (2014). We show that if H has one of the three properties: Haagerup property (a-T-menability), weak amenability or weak Haagerup property, then so does G. In particular, we show that if Γ and Δ are measure equivalent discrete...
Relative property (T) has recently been used to show the existence of a variety of new rigidity phenomena, for example in von Neumann algebras and the study of orbit-equivalence relations. However, until recently there were few examples of group pairs with relative property (T) available through the literature. This motivated the following result: A finitely generated group admits a special linear representation with non-amenable -Zariski closure if and only if it acts on an Abelian group (of...