Pseudoconcave Lie groups
Soit une algèbre de Jordan simple euclidienne de dimension finie et le cône symétrique associé. Nous étudions dans cet article le semi-groupe , naturellement associé à , formé des automorphismes holomorphes du domaine tube qui appliquent le cône dans lui-même.
Soit un groupe localement compact abélien ou un groupe de Lie et un compact parfait de . Il existe alors un compact de mesure de Haar nulle tel que soit d’intérieur non vide. En particulier si est métrisable, les seuls ensembles analytiques tels que soit de mesure nulle dès que l’est, sont dénombrables.
We construct and study a Stratonovich-Weyl correspondence for the holomorphic representations of the Jacobi group.