Induced representations of completely solvable Lie groups
Let be a simply connected -dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on compatible with to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving...
We characterize Carnot groups admitting a 1-quasiconformal metric inversion as the Lie groups of Heisenberg type whose Lie algebras satisfy the J2-condition, thus characterizing a special case of inversion invariant bi-Lipschitz homogeneity. A more general characterization of inversion invariant bi-Lipschitz homogeneity for certain non-fractal metric spaces is also provided.
We construct the first examples of continuous families of isospectral Riemannian metrics that are not locally isometric on closed manifolds , more precisely, on , where is a torus of dimension and is a sphere of dimension . These metrics are not locally homogeneous; in particular, the scalar curvature of each metric is nonconstant. For some of the deformations, the maximum scalar curvature changes during the deformation.