A characterization of bi-invariant Schwartz space multipliers on nilpotent Lie groups
Let N be an H-type group and consider its one-dimensional solvable extension NA, equipped with a suitable left-invariant Riemannian metric. We prove a Paley-Wiener theorem for nonradial functions on NA supported in a set whose boundary is a horocycle of the form Na, a ∈ A.
Let 𝓢(Hₙ) be the space of Schwartz functions on the Heisenberg group Hₙ. We define a spherical transform on 𝓢(Hₙ) associated to the action (by automorphisms) of U(p,q) on Hₙ, p + q = n. We determine its kernel and image and obtain an inversion formula analogous to the Godement-Plancherel formula.
The set of all Abelian simply transitive subgroups of the affine group naturally corresponds to the set of real solutions of a system of algebraic equations. We classify all simply transitive subgroups of the symplectic affine group by constructing a model space for the corresponding variety of solutions. Similarly, we classify the complete global model spaces for flat special Kähler manifolds with a constant cubic form.
We observe that the classical theorem of Hardy on Fourier transform pairs can be reformulated in terms of the heat kernel associated with the Laplacian on the Euclidean space. This leads to an interesting version of Hardy's theorem for the sublaplacian on the Heisenberg group. We also consider certain Rockland operators on the Heisenberg group and Schrödinger operators on ℝⁿ related to them.
This Note gives an extension of Mahler's theorem on lattices in to simply connected nilpotent groups with a -structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.
For a simply connected solvable Lie group G with a lattice Γ, the author constructed an explicit finite-dimensional differential graded algebra A*Γ which computes the complex valued de Rham cohomology H*(Γ, C) of the solvmanifold Γ. In this note, we give a quick introduction to the construction of such A*Γ including a simple proof of H*(A*Γ) ≅ H*(Γ, C).