Page 1

Displaying 1 – 10 of 10

Showing per page

Rectifiability and perimeter in step 2 Groups

Bruno Franchi, Raul Serapioni, Francesco Serra Cassano (2002)

Mathematica Bohemica

We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical De Giorgi’s theory, developed in Euclidean spaces by De Giorgi, as well as its generalization, considered by the authors, in Heisenberg groups. A structure theorem for sets of finite perimeter and consequently a divergence theorem are obtained. Full proofs of these results, comments and an exhaustive bibliography can be found in our preprint (2001).

Représentations de semi-groupes de mesures sur un groupe localement compact

Michel Duflo (1978)

Annales de l'institut Fourier

Soit T une distribution dissipative sur un groupe de Lie G et soit π une représentation fortement continue de G dans un espace de Banach. Supposons T à support compact. Il y a deux façons évidentes de définir un opérateur fermé π ( T ) : une faible et une forte. Le résultat principal de cet article est que l’on obtient le même résultat et que π ( T ) engendre un semi-groupe fortement continu d’opérateurs.

Riesz potentials and amalgams

Michael Cowling, Stefano Meda, Roberta Pasquale (1999)

Annales de l'institut Fourier

Let ( M , d ) be a metric space, equipped with a Borel measure μ satisfying suitable compatibility conditions. An amalgam A p q ( M ) is a space which looks locally like L p ( M ) but globally like L q ( M ) . We consider the case where the measure μ ( B ( x , ρ ) of the ball B ( x , ρ ) with centre x and radius ρ behaves like a polynomial in ρ , and consider the mapping properties between amalgams of kernel operators where the kernel ker K ( x , y ) behaves like d ( x , y ) - a when d ( x , y ) 1 and like d ( x , y ) - b when d ( x , y ) 1 . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems...

Currently displaying 1 – 10 of 10

Page 1