Page 1

Displaying 1 – 10 of 10

Showing per page

Entrelacement des restrictions des représentations unitaires des groupes de Lie nilpotents

Ali Baklouti, Jean Ludwig (2001)

Annales de l’institut Fourier

Nous donnons dans cet article une désintégration en irréductibles explicite des restrictions aux sous-groupes connexes fermés des représentations unitaires et irréductibles pour les groupes de Lie nilpotents simplement connexes. Ainsi, nous décrivons un opérateur d'entrelacement qui ne tient pas compte des multiplicités intervenant dans la désintégration.

Équations aux différences associées à des groupes, fonctions représentatives.

Nicolas Marteau (2004)

Annales de l’institut Fourier

Inspiré par un travail de J.-P. Bézivin et F. Gramain sur les systèmes d’équations aux différences, on caractérise les sous-groupes H d’un groupe de Lie réel (resp. complexe) G , pour lesquels toute fonction f : G continue (resp. entière) telle que l’ensemble des H -translatées engendrent un -espace vectoriel de dimension finie, engendrent aussi un -espace vectoriel de dimension finie par G - translation. On fait le lien avec les systèmes d’équations aux différences à coefficients constants.

Équations différentielles invariantes sur les groupes et algèbres de Lie réductifs

Abderrazak Bouaziz, Nouri Kamoun (2000)

Annales de l'institut Fourier

Soient G un groupe de Lie réductif d’algèbre de Lie 𝔤 , D un opérateur différentiel non nul à coefficients constants et G -invariant sur 𝔤 , et v une distribution G -invariante sur 𝔤 . Nous montrons que l’équation différentielle D · u = v a des solutions dans l’espace des distributions G -invariantes sur 𝔤 ; de plus, si v est tempérée ou d’ordre fini, on peut trouver des solutions ayant les mêmes propriétés. Si D est un opérateur différentiel bi-invariant non nul sur G , Benabdallah et Rouvière ont donné une condition...

Estimates for the Poisson kernels and their derivatives on rank one NA groups

Ewa Damek, Andrzej Hulanicki, Jacek Zienkiewicz (1997)

Studia Mathematica

For rank one solvable Lie groups of the type NA estimates for the Poisson kernels and their derivatives are obtained. The results give estimates on the Poisson kernel and its derivatives in a natural parametrization of the Poisson boundary (minus one point) of a general homogeneous, simply connected manifold of negative curvature.

Currently displaying 1 – 10 of 10

Page 1