Displaying 81 – 100 of 211

Showing per page

Invariant symbolic calculus for semidirect products

Benjamin Cahen (2018)

Commentationes Mathematicae Universitatis Carolinae

Let G be the semidirect product V K where K is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space V . Let π be a unitary irreducible representation of G which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of G whose little group is a maximal compact subgroup of K . We construct an invariant symbolic calculus for π , under some technical hypothesis. We give some examples including the Poincaré group.

K-finite Whittaker functions are of finite order one

(2013)

Acta Arithmetica

We prove a finite order one type estimate for the Whittaker function attached to a K-finite section of a principle series representation of a real or complex Chevalley group. Effective computations are made using convexity in ℂⁿ, following the original paper of Jacquet. As an application, we give a simplified proof of the known result of the boundedness in vertical strips of certain automorphic L-functions, using a result of Müller.

La formule du caractère pour les groupes de Lie presque algébriques réels

Mohamed Salah Khalgui, Pierre Torasso (2002)

Annales de l’institut Fourier

Le but de ce travail est de donner une description globale du caractère des représentations unitaires irréductibles d’un groupe presque algèbrique réel, construites par M. Duflo dans le cadre de la méthode des orbites. Pour ce faire, nous démontrons sous certaines conditions une formule de localisation permettant d’exprimer le caractère d’une représentation associée à l’orbite coadjointe Ω au voisinage d’un élément elliptique s en terme de la transformée de Fourier de la mesure de Liouville sur l’ensemble...

Matrix valued orthogonal polynomials of Jacobi type: the role of group representation theory

F. Alberto Grünbaum, Inés Pacharoni, Juan Alfredo Tirao (2005)

Annales de l’institut Fourier

The main purpose of this paper is to present new families of Jacobi type matrix valued orthogonal polynomials obtained from the underlying group S U ( n ) and its representations. These polynomials are eigenfunctions of some symmetric second order hypergeometric differential operator with matrix coefficients. The final result holds for arbitrary values of the parameters α , β > - 1 , but it is derived only for those values that come from the group theoretical setup.

Currently displaying 81 – 100 of 211