A comparison theorem for -homology
Page 1 Next
Henryk Hecht, Joseph L. Taylor (1993)
Compositio Mathematica
Jan Kubarski (1991)
Revista Matemática de la Universidad Complutense de Madrid
Monique Combescure (1992)
Journées équations aux dérivées partielles
Tu, Loring W. (2004)
Journal of Lie Theory
Alfredo Brega, Juan Tirao (1992)
Manuscripta mathematica
A. Crumeyrolle (1974/1975)
Séminaire Jean Leray
Janusz Grabowski (2016)
Commentationes Mathematicae Universitatis Carolinae
We discuss a concept of loopoid as a non-associative generalization of Brandt groupoid. We introduce and study also an interesting class of more general objects which we call semiloopoids. A differential version of loopoids is intended as a framework for Lagrangian discrete mechanics.
J. C. Benjumea, F. J. Echarte, Núñez, J.,Tenorio, A. F. (2004)
Extracta Mathematicae
The aim of this paper is the study of abelian Lie algebras as subalgebras of the nilpotent Lie algebra gn associated with Lie groups of upper-triangular square matrices whose main diagonal is formed by 1. We also give an obstruction to obtain the abelian Lie algebra of dimension one unit less than the corresponding to gn as a Lie subalgebra of gn. Moreover, we give a procedure to obtain abelian Lie subalgebras of gn up to the dimension which we think it is the maximum.
Feroze, Tooba, Qadir, Asghar (2009)
Differential Equations & Nonlinear Mechanics
M. D. Gould (1978)
Annales de l'I.H.P. Physique théorique
Wallner, Johannes (1995)
Mathematica Pannonica
Dimitris-Panayotis Panou (1990)
Manuscripta mathematica
J. Dixmier (1979)
Journal für die reine und angewandte Mathematik
Hans-Peter Seidel (1991)
Forum mathematicum
Fritz Schwarz (1971)
Annales de l'I.H.P. Physique théorique
Calvin C. Moore, Jonathan Rosenberg (1975)
Annales scientifiques de l'École Normale Supérieure
Karl-Hermann Neeb (1994)
Forum mathematicum
Ross M. Adams, Rory Biggs, Claudiu C. Remsing (2013)
Communications in Mathematics
We classify the left-invariant control affine systems evolving on the orthogonal group . The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.
Marianne Guillemot-Teissier (1962)
Annales scientifiques de l'École Normale Supérieure
Kelly McKennon (1984)
Journal für die reine und angewandte Mathematik
Page 1 Next