A new proof of monotonicity for extended mean values.
We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.
We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.
It is shown that there exist a continuous function and a regulated function defined on the interval such that vanishes everywhere except for a countable set, and the -integral of with respect to does not exist. The problem was motivated by extensions of evolution variational inequalities to the space of regulated functions.
We establish a Banach-Steinhaus type theorem for nonlinear functionals of several variables. As an application, we obtain extensions of the recent results of Balcerzak and Wachowicz on some meager subsets of L¹(μ) × L¹(μ) and c₀ × c₀. As another consequence, we get a Banach-Mazurkiewicz type theorem on some residual subset of C[0,1] involving Kharazishvili's notion of Φ-derivative.