Le théorème des accroissements finis -adique
We present a survey of the Lusin condition (N) for -Sobolev mappings defined in a domain G of . Applications to the boundary behavior of conformal mappings are discussed.
In this article, we formalized Lebesgue's Convergence theorem of complex-valued function. We proved Lebesgue's Convergence Theorem of realvalued function using the theorem of extensional real-valued function. Then applying the former theorem to real part and imaginary part of complex-valued functional sequences, we proved Lebesgue's Convergence Theorem of complex-valued function. We also defined partial sums of real-valued functional sequences and complex-valued functional sequences and showed their...
We introduce left general fractional Caputo style derivatives with respect to an absolutely continuous strictly increasing function g. We give various examples of such fractional derivatives for different g. Let f be a p-times continuously differentiable function on [a,b], and let L be a linear left general fractional differential operator such that L(f) is non-negative over a closed subinterval I of [a,b]. We find a sequence of polynomials Qₙ of degree ≤n such that L(Qₙ) is non-negative over I,...
The purpose of this paper is to present Fatou type results for a sequence of Pettis integrable functions and multifunctions. We prove the non vacuity of the weak upper limit of a sequence of Pettis integrable functions taking their values in a locally convex space and we deduce a Fatou's lemma for a sequence of convex weak compact valued Pettis integrable multifunctions. We prove as well a Lebesgue theorem for a sequence of Pettis integrable multifunctions with values in the space of convex compact...
Les méthodes de points intérieurs en programmation linéaire connaissent un grand succès depuis l’introduction de l’algorithme de Karmarkar. La convergence de l’algorithme repose sur une fonction potentielle qui, sous sa forme multiplicative, fait apparaître un exposant . Cet exposant est, de façon générale, choisi supérieur au nombre de variables du problème. Nous montrons dans cet article que l’on peut utiliser des valeurs de plus petites que . Ceci permet d’améliorer le conditionnement de...
Les méthodes de points intérieurs en programmation linéaire connaissent un grand succès depuis l'introduction de l'algorithme de Karmarkar. La convergence de l'algorithme repose sur une fonction potentielle qui, sous sa forme multiplicative, fait apparaître un exposant p. Cet exposant est, de façon générale, choisi supérieur au nombre de variables n du problème. Nous montrons dans cet article que l'on peut utiliser des valeurs de p plus petites que n. Ceci permet d'améliorer le conditionnement...
We are going to prove that level sets of continuous functions increasing with respect to each variable are arcwise connected (Theorem 3) and characterize those of them which are arcs (Theorem 2). In [3], we will apply the second result to the classical linear functional equation φ∘f = gφ + h (cf., for instance, [1] and [2]) in a case not studied yet, where f is given as a pair of means, that is so-called mean-type mapping.