Variational Henstock integrability of Banach space valued functions
We study the integrability of Banach space valued strongly measurable functions defined on . In the case of functions given by , where are points of a Banach space and the sets are Lebesgue measurable and pairwise disjoint subsets of , there are well known characterizations for Bochner and Pettis integrability of . The function is Bochner integrable if and only if the series is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of ....