Page 1

Displaying 1 – 5 of 5

Showing per page

Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion

Tuo-Yeong Lee (2005)

Mathematica Bohemica

It is shown that a Banach-valued Henstock-Kurzweil integrable function on an m -dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function f [ 0 , 1 ] 2 and a continuous function F [ 0 , 1 ] 2 such that ( ) 0 x ( ) 0 y f ( u , v ) d v d u = ( ) 0 y ( ) 0 x f ( u , v ) d u d v = F ( x , y ) for all ( x , y ) [ 0 , 1 ] 2 .

Bifurcation of periodic solutions to nonlinear measure differential equations

Maria Carolina Mesquita, Milan Tvrdý (2025)

Czechoslovak Mathematical Journal

The paper is devoted to the periodic bifurcation problems for generalizations of ordinary differential systems. The bifurcation is understood in the static sense of Krasnoselski and Zabreko. First, the conditions necessary for the given point to be bifurcation point for non autonomous generalized ordinary differential equations (based on the Kurzweil gauge type generalized integral) are proved. Then, as the main contribution, analogous results are obtained also for the nonlinear non autonomous measure...

Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral

Salvador Sánchez-Perales, Francisco J. Mendoza-Torres (2020)

Czechoslovak Mathematical Journal

In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation - y ' ' + q y = f , where q and f are Henstock-Kurzweil integrable functions on [ a , b ] . Results presented in this article are generalizations of the classical results for the Lebesgue integral.

Bounded linear functionals on the space of Henstock-Kurzweil integrable functions

Tuo-Yeong Lee (2009)

Czechoslovak Mathematical Journal

Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.

Currently displaying 1 – 5 of 5

Page 1