Cauchy's residue theorem for a class of real valued functions
Let be an interval in and let be a real valued function defined at the endpoints of and with a certain number of discontinuities within . Assuming to be differentiable on a set to the derivative , where is a subset of at whose points can take values or not be defined at all, we adopt the convention that and are equal to at all points of and show that , where denotes the total value of the Kurzweil-Henstock integral. The paper ends with a few examples that illustrate...