Displaying 61 – 80 of 188

Showing per page

Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions

B. Bongiorno, Luisa Di Piazza, Kazimierz Musiał (2006)

Mathematica Bohemica

We study the integrability of Banach valued strongly measurable functions defined on [ 0 , 1 ] . In case of functions f given by n = 1 x n χ E n , where x n belong to a Banach space and the sets E n are Lebesgue measurable and pairwise disjoint subsets of [ 0 , 1 ] , there are well known characterizations for the Bochner and for the Pettis integrability of f (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.

Lebesgue's Convergence Theorem of Complex-Valued Function

Keiko Narita, Noboru Endou, Yasunari Shidama (2009)

Formalized Mathematics

In this article, we formalized Lebesgue's Convergence theorem of complex-valued function. We proved Lebesgue's Convergence Theorem of realvalued function using the theorem of extensional real-valued function. Then applying the former theorem to real part and imaginary part of complex-valued functional sequences, we proved Lebesgue's Convergence Theorem of complex-valued function. We also defined partial sums of real-valued functional sequences and complex-valued functional sequences and showed their...

Linear Stieltjes integral equations in Banach spaces

Štefan Schwabik (1999)

Mathematica Bohemica

Fundamental results concerning Stieltjes integrals for functions with values in Banach spaces have been presented in [5]. The background of the theory is the Kurzweil approach to integration, based on Riemann type integral sums (see e.g. [3]). It is known that the Kurzweil theory leads to the (non-absolutely convergent) Perron-Stieltjes integral in the finite dimensional case. Here basic results concerning equations of the form x(t) = x(a) +at [A(s)]x(s) +f(t) - f(a) are presented on the basis of...

Nonabsolutely convergent series

Dana Fraňková (1991)

Mathematica Bohemica

Assume that for any t from an interval [ a , b ] a real number u ( t ) is given. Summarizing all these numbers u ( t ) is no problem in case of an absolutely convergent series t [ a , b ] u ( t ) . The paper gives a rule how to summarize a series of this type which is not absolutely convergent, using a theory of generalized Perron (or Kurzweil) integral.

Currently displaying 61 – 80 of 188