Réponse à la Lettre précédente.
In this article we deal with the Riemann integral of functions from R into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from R into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements of a real normed space and finite sequences of real numbers. In addition we proved some theorems about the...
In this article, we define the Riemann integral on functions R into n-dimensional real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to the wider range. Our method refers to the [21].
In this article, we define the Riemann Integral of functions from R into Rn, and prove the linearity of this operator. The presented method is based on [21].
In this article, we define the Riemann integral on functions from R into real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to a wider range of functions. The proof method follows the [16].
In this article, we define the Riemann Integral on functions R into C and proof the linearity of this operator. Especially, the Riemann integral of complex functions is constituted by the redefinition about the Riemann sum of complex numbers. Our method refers to the [19].
The McShane and Kurzweil-Henstock integrals for functions taking values in a locally convex space are defined and the relations with other integrals are studied. A characterization of locally convex spaces in which Henstock Lemma holds is given.
In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties. In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the article [7], we described...