The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 25 of 25

Showing per page

Well-Posedness of the Cauchy Problem for Inhomogeneous Time-Fractional Pseudo-Differential Equations

Saydamatov, Erkin (2006)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12In the present paper the Cauchy problem for partial inhomogeneous pseudo-differential equations of fractional order is analyzed. The solvability theorem for the Cauchy problem in the space ΨG,2(R^n) of functions in L2(R^n) whose Fourier transforms are compactly supported in a domain G ⊆ R^n is proved. The representation of the solution in terms of pseudo-differential operators is given. The solvability theorem in the Sobolev...

Where are typical C 1 functions one-to-one?

Zoltán Buczolich, András Máthé (2006)

Mathematica Bohemica

Suppose F [ 0 , 1 ] is closed. Is it true that the typical (in the sense of Baire category) function in C 1 [ 0 , 1 ] is one-to-one on F ? If dim ̲ B F < 1 / 2 we show that the answer to this question is yes, though we construct an F with dim B F = 1 / 2 for which the answer is no. If C α is the middle- α Cantor set we prove that the answer is yes if and only if dim ( C α ) 1 / 2 . There are F ’s with Hausdorff dimension one for which the answer is still yes. Some other related results are also presented.

Whitney arcs and 1-critical arcs

Marianna Csörnyei, Jan Kališ, Luděk Zajíček (2008)

Fundamenta Mathematicae

A simple arc γ ⊂ ℝⁿ is called a Whitney arc if there exists a non-constant real function f on γ such that l i m y x , y γ | f ( y ) - f ( x ) | / | y - x | = 0 for every x ∈ γ; γ is 1-critical if there exists an f ∈ C¹(ℝⁿ) such that f’(x) = 0 for every x ∈ γ and f is not constant on γ. We show that the two notions are equivalent if γ is a quasiarc, but for general simple arcs the Whitney property is weaker. Our example also gives an arc γ in ℝ² each of whose subarcs is a monotone Whitney arc, but which is not a strictly monotone Whitney arc. This...

Currently displaying 21 – 25 of 25

Previous Page 2