On a generalized Minkowski inequality and its relation to dominates for t-norms.
We solve Matkowski's problem for strictly comparable quasi-arithmetic means.
2000 Mathematics Subject Classification: Primary 26A33; Secondary 47G20, 31B05We study a singular value problem and the boundary Harnack principle for the fractional Laplacian on the exterior of the unit ball.
We investigate functions f: I → ℝ (where I is an open interval) such that for all u,v ∈ I with u < v and f(u) ≠ f(v) and each c ∈ (min(f(u),f(v)),max(f(u),f(v))) there is a point w ∈ (u,v) such that f(w) = c and f is approximately continuous at w.
The paper is concerned with a recent very interesting theorem obtained by Holický and Zelený. We provide an alternative proof avoiding games used by Holický and Zelený and give some generalizations to the case of set-valued mappings.