Displaying 41 – 60 of 69

Showing per page

Positivity and contractivity in the dynamics of clusters’ splitting with derivative of fractional order

Emile Franc Doungmo Goufo, Stella Mugisha (2015)

Open Mathematics

Classical models of clusters’ fission have failed to fully explain strange phenomenons like the phenomenon of shattering (Ziff et al., 1987) and the sudden appearance of infinitely many particles in some systems with initial finite particles number. Furthermore, the bounded perturbation theorem presented in (Pazy, 1983) is not in general true in solution operators theory for models of fractional order γ (with 0 < γ ≤ 1). In this article, we introduce and study a model that can be understood as...

Positivity and stabilization of fractional 2D linear systems described by the Roesser model

Tadeusz Kaczorek, Krzysztof Rogowski (2010)

International Journal of Applied Mathematics and Computer Science

A new class of fractional 2D linear discrete-time systems is introduced. The fractional difference definition is applied to each dimension of a 2D Roesser model. Solutions of these systems are derived using a 2D Z-transform. The classical Cayley-Hamilton theorem is extended to 2D fractional systems described by the Roesser model. Necessary and sufficient conditions for the positivity and stabilization by the state-feedback of fractional 2D linear systems are established. A procedure for the computation...

Currently displaying 41 – 60 of 69