Displaying 21 – 40 of 69

Showing per page

Point derivations for Lipschitz functions andClarke's generalized derivative

Vladimir Demyanov, Diethard Pallaschke (1997)

Applicationes Mathematicae

Clarke’s generalized derivative f 0 ( x , v ) is studied as a function on the Banach algebra Lip(X,d) of bounded Lipschitz functions f defined on an open subset X of a normed vector space E. For fixed x X and fixed v E the function f 0 ( x , v ) is continuous and sublinear in f L i p ( X , d ) . It is shown that all linear functionals in the support set of this continuous sublinear function satisfy Leibniz’s product rule and are thus point derivations. A characterization of the support set in terms of point derivations is given.

Points of continuity and quasicontinuity

Ján Borsík (2010)

Open Mathematics

Let C(f), Q(f), E(f) and A(f) be the sets of all continuity, quasicontinuity, upper and lower quasicontinuity and cliquishness points of a real function f: X → ℝ, respectively. The triplets (C(f),Q(f),A(f)), (C(f),E(f),A(f) and (Q(f),E(f),A(f)are characterized for functions defined on Baire metric spaces without isolated points.

Pointwise convergence to the initial data for nonlocal dyadic diffusions

Marcelo Actis, Hugo Aimar (2016)

Czechoslovak Mathematical Journal

We solve the initial value problem for the diffusion induced by dyadic fractional derivative s in + . First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator....

Pointwise limits for sequences of orbital integrals

Claire Anantharaman-Delaroche (2010)

Colloquium Mathematicae

In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G on (G,ρ), where ρ is the right Haar measure. We study the same kind of problem, but more generally for left actions of G on any measure space (X,μ), which leave the σ-finite measure μ relatively invariant, in the sense that sμ = Δ(s)μ for every s ∈ G, where Δ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin...

Pointwise regularity associated with function spaces and multifractal analysis

Stéphane Jaffard (2006)

Banach Center Publications

The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces C E α ( x ) are constructed, leading to a notion of pointwise regularity with respect to E; the case E = L corresponds to the usual Hölder regularity, and...

Polynomial selections and separation by polynomials

Szymon Wąsowicz (1996)

Studia Mathematica

K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems on separation of an n-convex function from an n-concave function by a polynomial of degree at most n and a stability result of Hyers-Ulam type for polynomials.

Currently displaying 21 – 40 of 69