Point derivations for Lipschitz functions andClarke's generalized derivative
Clarke’s generalized derivative is studied as a function on the Banach algebra Lip(X,d) of bounded Lipschitz functions f defined on an open subset X of a normed vector space E. For fixed and fixed the function is continuous and sublinear in . It is shown that all linear functionals in the support set of this continuous sublinear function satisfy Leibniz’s product rule and are thus point derivations. A characterization of the support set in terms of point derivations is given.