Displaying 81 – 100 of 303

Showing per page

A new method to obtain decay rate estimates for dissipative systems

Patrick Martinez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the wave equation damped with a boundary nonlinear velocity feedback p(u'). Under some geometrical conditions, we prove that the energy of the system decays to zero with an explicit decay rate estimate even if the function ρ has not a polynomial behavior in zero. This work extends some results of Nakao, Haraux, Zuazua and Komornik, who studied the case where the feedback has a polynomial behavior in zero and completes a result of Lasiecka and Tataru. The proof is based on the construction...

A nonexistence result for the Kurzweil integral

Pavel Krejčí, Jaroslav Kurzweil (2002)

Mathematica Bohemica

It is shown that there exist a continuous function f and a regulated function g defined on the interval [ 0 , 1 ] such that g vanishes everywhere except for a countable set, and the K * -integral of f with respect to g does not exist. The problem was motivated by extensions of evolution variational inequalities to the space of regulated functions.

A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces

Jacek Jachymski (2005)

Studia Mathematica

We establish a Banach-Steinhaus type theorem for nonlinear functionals of several variables. As an application, we obtain extensions of the recent results of Balcerzak and Wachowicz on some meager subsets of L¹(μ) × L¹(μ) and c₀ × c₀. As another consequence, we get a Banach-Mazurkiewicz type theorem on some residual subset of C[0,1] involving Kharazishvili's notion of Φ-derivative.

Currently displaying 81 – 100 of 303