On certain inequalities improving the Hermite-Hadamard inequality.
In this paper we give a sufficient condition on the pair of weights for the boundedness of the Weyl fractional integral from into . Under some restrictions on and , this condition is also necessary. Besides, it allows us to show that for any there exist non-trivial weights such that is bounded from into itself, even in the case .
We construct a family of continuous functions on the unit interval which have nowhere a unilateral derivative finite or infinite by using De Rham’s functional equations. Then we show that for any
One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.