Displaying 1421 – 1440 of 2163

Showing per page

On the uniform limit of quasi-continuous functions.

Baltasar Rodríguez-Salinas (2001)

RACSAM

Estudiamos cuando el límite uniforme de una red de funciones cuasi-continuas con valores en un espacio localmente convexo X es también una función cuasi-continua, resaltando que esta propiedad depende del menor cardinal de un sistema fundamental de entornos de O en X, y estableciendo condiciones necesarias y suficientes. El principal resultado de este trabajo es el Teorema 15, en el que los resultados de [7] y [10] son mejorados, en relación al Teorema de L. Schwartz.

On the σ -finiteness of a variational measure

Diana Caponetti (2003)

Mathematica Bohemica

The σ -finiteness of a variational measure, generated by a real valued function, is proved whenever it is σ -finite on all Borel sets that are negligible with respect to a σ -finite variational measure generated by a continuous function.

On theorems of Pu & Pu and Grande

Aleksander Maliszewski (1996)

Mathematica Bohemica

Given a finite family of cliquish functions, , we can find a Lebesgue function α such that f + α is Darboux and quasi-continuous for every f . This theorem is a generalization both of the theorem by H. W. Pu H. H. Pu and of the theorem by Z. Grande.

On Two Saigo’s Fractional Integral Operators in the Class of Univalent Functions

Kiryakova, Virginia (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35Recently, many papers in the theory of univalent functions have been devoted to mapping and characterization properties of various linear integral or integro-differential operators in the class S (of normalized analytic and univalent functions in the open unit disk U), and in its subclasses (as the classes S∗ of the starlike functions and K of the convex functions in U). Among these operators, two operators introduced...

On variations of functions of one real variable

Washek Frank Pfeffer (1997)

Commentationes Mathematicae Universitatis Carolinae

We discuss variations of functions that provide conceptually similar descriptive definitions of the Lebesgue and Denjoy-Perron integrals.

On vector functions of bounded convexity

Libor Veselý, Luděk Zajíček (2008)

Mathematica Bohemica

Let X be a normed linear space. We investigate properties of vector functions F : [ a , b ] X of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity K a b F is equal to the variation of F + ' on [ a , b ) . As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.

Currently displaying 1421 – 1440 of 2163