Displaying 141 – 160 of 434

Showing per page

On Fractional Helmholtz Equations

Samuel, M., Thomas, Anitha (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 33E12, 33C60, 35R11In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.

On generalized Peano and Peano derivatives

H. Fejzić (1993)

Fundamenta Mathematicae

A function F is said to have a generalized Peano derivative at x if F is continuous in a neighborhood of x and if there exists a positive integer q such that a qth primitive of F in the neighborhood has the (q+n)th Peano derivative at x; in this case the latter is called the generalized nth Peano derivative of F at x and denoted by F [ n ] ( x ) . We show that generalized Peano derivatives belong to the class [Δ’]. Also we show that they are path derivatives with a nonporous system of paths satisfying the I.I.C....

On Generalized Weyl Fractional q-Integral Operator Involving Generalized Basic Hypergeometric Functions

Yadav, R., Purohit, S., Kalla, S. (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33D60, 33D90, 26A33Fractional q-integral operators of generalized Weyl type, involving generalized basic hypergeometric functions and a basic analogue of Fox’s H-function have been investigated. A number of integrals involving various q-functions have been evaluated as applications of the main results.

Currently displaying 141 – 160 of 434