Some inequalities connected with an approximate integration.
Kurzweil-Henstock integrals related to local systems and the wide Denjoy integral are discussed in the frame of their comparability and compatibility.
The aim of the paper is to present some mean value theorems obtained as consequences of the intermediate value property. First, we will prove that any nonextremum value of a Darboux function can be represented as an arithmetic, geometric or harmonic mean of some different values of this function. Then, we will present some extensions of the Cauchy or Lagrange Theorem in classical or integral form. Also, we include similar results involving divided differences. The paper was motivated by some problems...
2000 Mathematics Subject Classification: Primary 26A24, 26D15; Secondary 41A05Some mean-value theorems of the Cauchy type, which are connected with Jensen’s inequality, are given in [2] in discrete form and in [5] in integral form. Several further generalizations and applications of these results are presented here.
Mathematical Subject Classification 2010:26A33, 33E99, 15A52, 62E15.Mittag-Leffler functions and their generalizations appear in a large variety of problems in different areas. When we move from total differential equations to fractional equations Mittag-Leffler functions come in naturally. Fractional reaction-diffusion problems in physical sciences and general input-output models in other disciplines are some of the examples in this direction. Some basic properties of Mittag-Leffler functions are...
We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function defined on a non-degenerate closed subinterval of in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure generated by the primitive of , where is the family of all closed non-degenerate subintervals of .
We show that for a wide class of σ-algebras 𝓐, indicatrices of 𝓐-measurable functions admit the same characterization as indicatrices of Lebesgue-measurable functions. In particular, this applies to functions measurable in the sense of Marczewski.
Mean value inequalities are shown for functions which are sub- or super-differentiable at every point.