Page 1 Next

Displaying 1 – 20 of 64

Showing per page

Second-order sufficient condition for ˜ -stable functions

Dušan Bednařík, Karel Pastor (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The aim of our article is to present a proof of the existence of local minimizer in the classical optimality problem without constraints under weaker assumptions in comparisons with common statements of the result. In addition we will provide rather elementary and self-contained proof of that result.

Semicontinuity in L for polyconvex integrals

Emilio Acerbi, Giuseppe Buttazzo, Nicola Fusco (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Viene studiata la semicontinuità rispetto alla topologia di L ( Ω ; 𝐑 m ) per alcuni funzionali del Calcolo delle Variazioni dipendenti da funzioni a valori vettoriali.

Semicopulæ

Fabrizio Durante, Carlo Sempi (2005)

Kybernetika

We define the notion of semicopula, a concept that has already appeared in the statistical literature and study the properties of semicopulas and the connexion of this notion with those of copula, quasi-copula, t -norm.

Semicopulas: characterizations and applicability

Fabrizio Durante, José Quesada-Molina, Carlo Sempi (2006)

Kybernetika

We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.

Short-time heat flow and functions of bounded variation in R N

Michele Miranda, Diego Pallara, Fabio Paronetto, Marc Preunkert (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove a characterisation of sets with finite perimeter and B V functions in terms of the short time behaviour of the heat semigroup in R N . For sets with smooth boundary a more precise result is shown.

Singular points of order k of Clarke regular and arbitrary functions

Luděk Zajíček (2012)

Commentationes Mathematicae Universitatis Carolinae

Let X be a separable Banach space and f a locally Lipschitz real function on X . For k , let Σ k ( f ) be the set of points x X , at which the Clarke subdifferential C f ( x ) is at least k -dimensional. It is well-known that if f is convex or semiconvex (semiconcave), then Σ k ( f ) can be covered by countably many Lipschitz surfaces of codimension k . We show that this result holds even for each Clarke regular function (and so also for each approximately convex function). Motivated by a resent result of A.D. Ioffe, we prove...

Singularities and equicontinuity of certain families of set-valued mappings

Tiberiu Trif (1998)

Commentationes Mathematicae Universitatis Carolinae

In the present paper we establish an abstract principle of condensation of singularities for families consisting of set-valued mappings. By using it as a basic tool, the condensation of the singularities and the equicontinuity of certain families of generalized convex set-valued mappings are studied. In particular, a principle of condensation of the singularities of families of closed convex processes is derived. This principle immediately yields the uniform boundedness theorem stated in [1, Theorem...

Sobre la concavidad de t-normas y de funciones triangulares.

Núria Agell (1984)

Stochastica

In this note we prove that the unique concave t-norm is Minimum and, among the class of triangular functions that have the family of unit step-functions as idempotent elements, the unique concave triangular function is piM.

Currently displaying 1 – 20 of 64

Page 1 Next