Solution to the gradient problem of C.E. Weil.
In this paper we give a complete answer to the famous gradient problem of C. E. Weil. On an open set G ⊂ R2 we construct a differentiable function f: G → R for which there exists an open set Ω1 ⊂ R2 such that ∇f(p) ∈ Ω1 for a p ∈ G but ∇f(q) ∉ Ω1 for almost every q ∈ G. This shows that the Denjoy-Clarkson property does not hold in higher dimensions.